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Transverse vibrations of an axially moving beam are considered. The axial velocity is
harmonically varying about a mean velocity. The equation of motion is expressed in terms of
dimensionless quantities. The beam e!ects are assumed to be small. Since, in this case, the
fourth order spatial derivative multiplies a small parameter, the mathematical model
becomes a boundary layer type of problem. Approximate solutions are searched using the
method of multiple scales and the method of matched asymptotic expansions. Results of
both methods are contrasted with the outer solution.
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1. INTRODUCTION

Band-saws, "ber textiles, paper sheets, aerial cable tramways, oil pipelines, magnetic tapes
and power transmission belts are all classi"ed as axially moving continua. A vast amount of
literature exists on the topic which is reviewed by Ulsoy et al. [1] and Wickert and Mote
[2]. These review papers cover the literature up to 1988. Wickert and Mote [3] studied both
the second order and fourth order models separately. They developed a formalism in which
the equations were cast in a suitable form for which the travelling string eigenfunctions are
orthogonal. By using complex forms, a more compact representation of the solutions were
obtained by the same authors [4]. Pakdemirli and Ulsoy [5] showed that, if
a direct-perturbation method is used instead of a discretization-perturbation method, there
is no need to express the equation of motion in a convenient form as was done in references
[3, 4]. A non-linear analysis including stretching e!ects were performed by Wickert [6].
Recently, a stability analysis was done by OG z and Pakdemirli [7] for a travelling beam with
harmonically varying axial velocity.

Many of the systems such as power-transmission belts, band-saws and pipes transporting
#uids may either be modelled as a string or a beam. Therefore, the transition behavior from
a string to a beam becomes signi"cant. Since, in the transition phase, the #exural rigidity
term is small compared to other terms, the highest order derivative is multiplied by a small
parameter which makes it necessary to construct a boundary layer type of solution.
Boundary layer solutions consists of two parts: (1) an outer solution which is valid for the
whole domain except in a very small region near the boundaries. This solution does not in
general satisfy the boundary conditions imposed by the boundaries, (2) an inner solution
which is valid near the boundaries. This solution has to satisfy the boundary conditions.
Inner and outer solutions are then matched and a composite expansion valid for all parts of
the domain are constructed. For the problem considered, an outer solution which is valid
everywhere except at the ends was constructed by OG z et al. [8]. The velocity was
0022-460X/00/280521#15 $35.00/0 ( 2000 Academic Press
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harmonically varying about a constant mean velocity in that study. Pellicano and Zirilli [9]
found a composite expansion including the inner and outer solutions of the constant
velocity case. Their analysis include both linear and non-linear terms. Using the method of
multiple scales, Pakdemirli and OG zkaya [10] constructed a composite expansion for the
constant velocity case.

Most of the work on axially moving continua dealt with constant axial velocity. Real
systems however are subject to accelerations and decelerations. In band-saws, belts and
wire-saw manufacturing small speed #uctuations do occur. In this work, the harmonically
varying velocity case is investigated. Boundary layer solutions are constructed using the
method of multiple scales and the method of matched asymptotic expansions. Results of
those methods are contrasted with the outer solution. For a simply supported beam, the
improvement in the solutions by using a boundary layer approach is the satisfaction of
moment conditions at the ends. A solution corresponding to the "xed } "xed case is also
presented.

2. EQUATION OF MOTION

The dimensionless equation of motion for a travelling beam with time-dependent velocity
is [8] (see Figure 1)

L2y

Lt2
#

dv

dt

Ly

Lx
#2v

L2y

Lx Lt
#(v2!1)

L2y

Lx2
#vN 2

f

L4y

Lx4
"0, (1)

where y is the vertical displacement, v(t) is the time-dependent axial velocity. For a detailed
derivation of equation of motion for constant velocity case, see reference [6]. vN 2

f
is

a dimensionless parameter de"ned as

vN 2
f
"

EI

P¸2
, (2)

where EI is the #exural rigidity, P is the axial tension force and ¸ is the length of the beam.
The dimensionless quantities are de"ned from the corresponding dimensional ones
(denoted by asterisk) as follows:

x"x*/¸, y"y*/¸, t"t* (1/¸) JP/oA, v"v*/JP/oA, (3)

where o is the density and A is the cross-sectional area of the beam. Now assume that the
velocity is harmonically varying about a constant mean velocity

v"v
0
#ev

1
sinXt, (4)
Figure 1. Schematics of an axially moving beam.
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where e is a small parameter. The dimensional velocity variation frequency (X*) is related to
the dimensionless one (X) through the relation.

X*"X (1/¸) JP/oA . (5)

If EI is small compared to P¸2, vN 2
f

may be chosen as

vN 2
f
"e v2

f
. (6)

Using conditions (4) and (6), the equation of motion (1) will be solved approximately in
the following sections. In section 3, an approximate solution is presented using the method
of matched asymptotic expansions. In section 4, the same problem is solved using the
method of multiple scales. Solutions presented in sections 3 and 4 are for simply supported
beams. In section 5, a boundary layer solution for a "xed}"xed beam is also presented.

3. METHOD OF MATCHED ASYMPTOTIC EXPANSIONS

In this section, the method of matched asymptotic expansions (MMAE) [11] will be used
to construct a uniform expansion valid for all ranges of the spatial variable. Since the
equation treated is a partial di!erential equation and elimination of secularities from the
time variable is needed, this method is combined with the method of multiple time scales by
introducing two time variables ¹

0
"t and ¹

1
"et. First the outer solution and then the

inner solutions at both ends will be found. All solutions will be matched and a composite
"nal solution will be constructed. The end conditions for simply supported beam are

y (0, t)"y (1, t)"0. yA (0, t)"yA (1, t)"0. (7)

3.1. OUTER SOLUTION

First, an outer solution valid for all ranges of spatial variable except at the ends will be
constructed. The outer expansion is

yo (x, t; e)"yo
0
(x, ¹

0
, ¹

1
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(x, ¹
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, ¹

1
)#2 (8)

Time derivatives are

d
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,
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D
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Substituting (4), (6), (8) and (9) into the equation of motion and separating terms of di!erent
orders, one obtains
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The solution of order 1 is
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where

u
n
"nn(1!v2

0
), >

n
(x)"C

n
eia

n
x sin nnx, a

n
"nnv

0
, n"1, 2, 3,2. (13)

Inserting equation (12) into equation (11) and eliminating secular terms, one has

D
1
A

n
!ik

0
A

n
"0, (14)

where

k
0
"1

2
v2
f
n3n3 (v4

0
#6v2

0
#1). (15)

Solution of equation (14) yields

A
n
"A

0
e ik

0
¹

1. (16)

Inserting equations (16) and (13) into equation (12) and rearranging using original variables,
one has

yo
0
(x, t)"C

n
cos [(u#ek

0
) t#nnv

0
x#h] sin nnx, (17)

where C
n

and h are arbitrary constants.
The solution of order e is
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1
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n G!
nnv

0
v
1

X
cosX t sin nnx sin [(u#ek

0
)t#nnv

0
x#h]

#

nnv
1
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0
) t#nnv

0
x#h]H. (18)

Hence, the outer solution is

yo (x, t)"C
nGcos [(u#ek

0
)t#nnv

0
x#h] sin nnx#eA!

nnv
0
v
1

X
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sin[(u#ek
0
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1
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]cos [(u#ek
0
)t#nnv

0
x#h]BH#2 . (19)

It is not expected for the outer solution to satisfy the end conditions. This solution satis"es
y(0, t)"y(1, t)"0 conditions with O(e) error but does not satisfy at all the moment
conditions yA(0, t)"yA (1, t)"0.

3.2. INNER SOLUTIONS

For each end of the beam, separate inner solutions should be constructed.
(i) Inner solution at the left-hand side.

One stretches the spatial variable as follows:

m"
x

ec
. (20)
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Substituting this variable into the original equation, in the distinguished limit c"1
2

and
hence one obtains

m"
x

Je
. (21)

Assuming now an inner expansion of the form

yi"yi
0
#Je yi

1
#e yi

2
#2 (22)

and inserting equations (21) and (22) into the equation of motion, one "nally obtains the
following set of equations:
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f
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0

Lm4
!(1!v2

0
)
L2yi

0
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"0, (23)

O (Je) : v2
f
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f
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2
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1
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!
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The conditions to be satis"ed are

L2yi
0

Lm2
(0, t)"0,

L2yi
1

Lm2
(0, t)"0,

L2yi
0

Lm2
(0, t)"!

L2yo
0

Lx2
(0, t). (26)

The last condition is the matching condition with the outer solution so that the error for
moment condition can be eliminated from the "rst term of approximation. If equations
(23)}(25) are solved subject to the boundary conditions (26), the inner solution at the
left-hand side is

yi"C
n
e

v2
f

1!v2
0

2n2n2v
0
sin[(u#ek

0
)t#h] e (~J1~v20 @vf) (x @Je) . (27)

(ii) Inner solution at the right-hand side.
For the right-hand side, the inner variable is

g"
1!x

Je
. (28)

A similar analysis yields
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n
e
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f

1!v2
0
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0
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0
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Combining all solutions (the left, right and outer expansions), the composite expansion
valid for all ranges of x is

y (x, t)"C
nGsin nnx cos [(u#ek

0
)t#nnv

0
x#h]#e A!

nnv
0
v
1

X
cosXt sin nnx

sin [(u#ek
0
)t#nnv

0
x#h]#

nnv
1

X
cosXt cosnnx cos [(u#ek

0
) t#nnv

0
x#h]



526 E. OG ZKAYA AND M. PAKDEMI0 RLI0
#

v2
f

1!v2
0

2n2n2 v
0
sin [(u#ek

0
) t#h] e (~J1~v20@vf) (x @Je)

#

v2
f

1!v2
0

2n2n2v
0
cos nn sin [(u#ek

0
) t#nnv

0
#h] e ~(J1~v20 @vf) (1~x )@JeBH#2 .

(30)

Note that this solution as well as the solution presented in the next section are valid in the
absence of principal parametric resonances (X:2u

n
) or combination resonances

(X:u
n
$u

m
). Such resonant solutions have already been investigated analytically [5, 8]

and numerically [12, 13] for a string.

4. METHOD OF MULTIPLE SCALES

In this section, the method of multiple scales [11] will be used to construct a uniform
solution valid for all ranges of the spatial variable. Since the algebra is much involved in
constructing a composite solution for both ends and for the middle part, we choose for
simplicity to construct "rst a solution valid for the left-hand side and middle and then
a solution valid for the right-hand side and middle. Finally, both solutions will be
combined.

For spatial and time variation representing di!erent scales, one may use the following
variables:

x
0
"x, x

1
"

x

Je
, ¹

0
"t, ¹

1
"et, (31)

where x
0

is the outer spatial variable and x
1

is the inner stretched spatial variable at the
left-hand side. Two time scales are used to eliminate the secularities. With respect to the new
variables, the derivatives are de"ned as follows:
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"
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"
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A suitable expansion for y(x, t) would be
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Substituting all into the original equation of motion, using the harmonically varying
velocity function de"ned in equation (4), separating at each order of e, one has

OA
1

eB: (v2
0
!1)

L2y
0

Lx2
1

#v2
f

L4y
0

Lx4
1

"0, (34)
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f
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0
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0
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0
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0
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0
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0
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0
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0
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0
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#
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0
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0
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0
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0
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#
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A solution of equation (34) is

y
0
"A (x

0
, ¹

0
, ¹

1
) e (J1~v20 @vf)x1#B(x

0
, ¹

0
, ¹

1
) e ~(J1~v20 @vf)x1#C(x

0
, ¹

0
, ¹

1
)x

1

#D (x
0
, ¹

0
, ¹

1
). (39)

For decaying solutions, one chooses A"C"0. The term with B is a part of the inner
solution. One may require B"0 for not allowing the inner solution to appear at the "rst
order. Hence

y
0
"D (x

0
, ¹

0
, ¹

1
) (40)
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is the solution at this order.

For order (1/Je), one substitutes the above solution into equation (35):

(v2
0
!1)

L2y
1

Lx2
1

#v2
f

L4y
1

Lx4
1

"0. (41)

One may now choose

y
1
"0 (42)

for simplicity. Inserting y
0

and y
1

to the right-hand side of equation (36), one obtains the
following equation:

(v2
0
!1)

L2y
2

Lx2
1

#v2
f

L4y
2

Lx4
1

"!

L2D

L¹2
0

!2v
0

L2D
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0
L¹

0
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0
!1)

L2D

Lx2
0
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In order not to introduce secular terms, D should be selected such that

L2D

L¹2
0

#2v
0

L2D

Lx
0
L¹

0

#(v2
0
!1)

L2D

Lx2
0

"0. (44)

Note that this equation is the equation for a strip moving with constant velocity. A decaying
type solution is selected for y

2
:

y
2
"E

1
(x

0
, ¹

0
¹
1
) e (~J1~v20@vf)x1 #F

1
(x

0
, ¹

0
, ¹

1
) . (45)

At order Je, the solvability condition is

v
0

LE
1

L¹
0

#(1!v2
0
)
LE

1
Lx

0

"0 (46)

and a decaying solution is selected as

y
3
"G

1
(x

0
, ¹

0
, ¹

1
) e~(J1~v20 @vf)x1 (47)

Finally at order e, the elimination of secularities yield

L2F
1

L¹2
0

#2v
0

L2F
1
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0
L¹

0

#(v2
0
!1)
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1

Lx2
0
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f

L4D
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0
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0
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1
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0
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0
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1

!v
1
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0
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0
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1
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0
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0
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0
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0
v
1
sin X¹

0
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0

, (48)

L2E
1

L¹2
0

#2v
0

L2E
1

Lx
0
L¹

0

#5(1!v2
0
)
L2E

1
Lx2

0

#2v
0
v
1
sinX¹

0
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0

v2
f

E
1
!2v

0
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0

v
f
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1

L¹
0

!

2(1!v2
0
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v
f
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1

Lx
0
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Substituting the solutions obtained for the expansion, up to order e, one has the
approximate boundary layer solution

y"D(x
0
, ¹

0
, ¹

1
)#e(E

1
(x

0
, ¹

0
, ¹

1
) e~(J1~v20 @vf)x1#F

1
(x

0
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0
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1
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The above solution contains the inner expansion at the left-hand side and the outer
expansion. One may now calculate the outer expansion and the right-hand side boundary
layer solution by de"ning the inner variable at the right-hand side:

x
2
"

(1!x)

Je
. (51)

A similar calculation with only inserting x
2

instead of x
1

makes some sign changes in the
equations. The "nal solution of this case is

y"D(x
0
, ¹

0
, ¹

1
)#e (E

2
(x

0
, ¹

0
, ¹

1
) e~(J1~v20 @vf)x2#F

2
(x

0
, ¹

0
, ¹

1
))#2. (52)

To obtain the composite expansion valid for all parts of the domain, one has to add solution
(50) to solution (52) and subtract the outer solution which is common. Hence, the "nal
solution is

y"D (x
0
, ¹

0
, ¹

1
)#e (E

1
(x

0
, ¹

0
, ¹

1
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2
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0
, ¹

0
, ¹

1
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1
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0
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0
, ¹

1
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4.1. BOUNDARY CONDITIONS AND DETERMINATION OF FUNCTIONS

The arbitrary functions given in the composite expansion (53) will be determined using
the solvability conditions and boundary conditions. In an analogous manner given in
section 3, the function D(x

0
, ¹

0
, ¹

1
), which is the "rst term in the outer solution, is found to

be

D(x
0
, ¹

0
, ¹

1
)"C

n
cos [(u#ek

0
) t#nnv

0
x#h] sin nnx. (54)

The remaining functions are found as follows:

E
1
"C

n
a
1
sin[(u#ek

0
) t!nnv

0
x#h

1
], (55)

E
2
"C

n
a
2
sin[(u#ek

0
) t!nnv

0
x#h

2
], (56)

F
1
"C

nG!
nnv

0
v
1

X
cosXt sin [(u#ek

0
)t#nnv

0
x#h] sin nnx

#

nnv
1

X
cosXt cos [(u#ek

0
) t#nnv

0
x#h] cos nnxH. (57)

To eliminate the error in satisfying the boundary conditions yA (0, t)"yA(1, t)"0 for the
"rst order of approximation, one has to select

a
1
"

2v2
f
n2n2 v

0
(1!v2

0
)

, h
1
"h, (58)

a
2
"

2v2
f
n2n2v

0
(1!v2

0
)

cos nn, h
2
"h#2nnv

0
. (59)
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The "nal solution may be expressed by substituting all the functions found into the
composite expansion (53):

y(x, t)"C
nGcos [(u#ek

0
)t#nnv

0
x#h] sin nnx#e

]C
2v2

f
n2n2v

0
(1!v2

0
)

sin [(u#ek
0
)t!nnv

0
x#h] e~(J1~v20@vf) (x)@Je

#

2v2
f
n2n2v

0
(1!v2

0
)

cos nn sin[(u#ek
0
)t!nnv

0
x#2nnv

0
#h] e~(J1~v20@vf) (1~x)@Je

!

nnv
0
v
1

X
cosXt sin [(u#ek

0
) t#nnv

0
x#h] sin nnx

#

nnv
1

X
cosXt cos [(u#ek

0
) t#nnv

0
x#h] cos nnxDH#2 . (60)

Solution (60) can be contrasted to the solution (30) obtained by matched asymptotic
expansions. Both solutions are similar except that additional (!nnv

0
x) terms appear in the

coe$cient functions of inner solutions in the method of multiple scales. Due to this
di!erence, method of matched asymptotic expansions satisfy the boundary conditions with

an O(e) error, there is an O(Je) error for the moment conditions (yA(0, t)"yA (1, t)"0) in
the method of multiple scales solutions. The error introduced in the de#ection conditions is
the same for both methods, namely O(e).

In Figure 2(a), MMAE, MMS and the outer solutions are compared for de#ections.
Figure 2(b) is a plot of three solutions for the second derivative of de#ections. It can be seen
that while there is no improvement in the outer solution for de#ections using boundary
layer solution, a substantial improvement compared to the outer solution is achieved in
satisfying the moment conditions at the ends in both MMS and MMAE solutions. Note
that MMS and MMAE solutions are indistinguishable for the special parameters selected.
To distinguish both methods, another set of parameters are chosen and plots of de#ection
and moment curves are given in Figures 3(a) and 3(b) respectively. Note that MMAE
solutions are better in satisfying the moment conditions. This is primarily due to the fact
that, there is an O(e) error in satisfying moment conditions for MMAE solutions whereas

the error introduced is O(Je) for MMS.
Finally, both methods may yield better approximations if additional terms are considered

in the expansions.

5. THE CASE OF FIXED}FIXED SUPPORTS

For "xed}"xed supports, the boundary conditions are

y (0, t)"y (1, t)"0, y@ (0, t)"y@ (1, t)"0. (61)

Since it is observed that the method of matched asymptotic expansions yielded slightly
better results than the method of multiple scales, calculations are performed using MMAE
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only. Carrying out the algebra similar to those given in section 3, one "nally obtains the
approximate solution as follows:

y(x, t)"C
n Gsin nnx cos[(u#ek

0
) t#nnv

0
x#h]

#Je A
v
f

J1!v2
0

nn cos [(u#ek
0
) t#h] e~(J1~v20 @vf) (x@Je)B
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Figure 3 (b). Comparison of second derivative of de#ection curves for outer expansion, method of multiple
scales and matched asymptotic expansion (n"1, v
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x#h]BH#2 . (62)

In Figures 4(a) and 4(b), plots of de#ection and slope curves of MMAE are contrasted to the
outer solutions. For de#ections, the outer solution has an O(e) error at the ends but the



Figure 4 (a). Comparison of de#ection curves for outer expansion, and matched asymptotic expansion for
"xed}"xed end conditions (n"1, v
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Figure 4 (b). Comparison of second derivative of de#ection curves for outer expansion and matched asymptotic
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MMAE solution has an O(Je) error. This explains the coarse match of the boundary layer
solution at the ends. For the slopes however, there is much improvement in employing
boundary layer type solutions. The boundary layer solutions may be improved by adding an
additional term in the perturbation expansion. This will require however extensive algebra.

6. CONCLUDING REMARKS

Approximate boundary layer solutions are presented for an axially accelerating beam
with small beam e!ects. The method of matched asymptotic expansions and the method of
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multiple scales are applied to the problem and composite expansions including two inner
solutions and one outer solution are found. Since exact solutions in closed-form functions
are not available, approximate analytical solutions might be useful to check numerical work
which may appear in the future.

By utilizing boundary-layer-type solutions, substantial improvements are achieved
especially at the ends compared to the outer solution. It is found that method of matched
asymptotic expansions solution is slightly better in satisfying the boundary conditions than
the method of multiple scales solution. While three expansions are needed in "nding
method of matched asymptotic expansions solution, only two are su$cient in the case of the
method of multiple scales solution. In MMS, matching conditions are not needed also.
These advantages bring another disadvantage: constructing the solutions at each order of
approximation is not as straightforward in the method of multiple scales as in the method of
matched asymptotic expansions and requires some experience.

For "nding boundary-layer-type solutions of axially moving materials, MMAE is
recommended. Note however that di!erent time scales are also used in eliminating
secularities in this method. To be more precise, multiple scales in both spatial and time
variables (MMS) is not recommended compared to the combination of multiple time scales
and matched asymptotic expansions (MMAE).

Finally, all solutions presented here are non-resonant solutions. It is well known that
principal and combination resonances occur for speci"c choices of the speed #uctuation
frequency [5, 8, 12, 13]. Here, the speed #uctuation frequencies are assumed to be away
from those critical values.
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